

Corso Penetration Test e Hacking Etico + Laboratori Pratici CompTIA

UNIT 1 – PLANNING AND SCOPING

MODULE 1 – COMPARE AND CONTRAST GOVERNANCE, RISK, AND COMPLIANCE CONCEPTS.

- Regulatory compliance considerations
 - Payment Card Industry Data Security Standard (PCI DSS)
 - General Data Protection Regulation (GDPR)
- Location restrictions
 - Country limitations
 - o Tool restrictions
 - o Local laws
 - Local government requirements
 - Privacy requirements
- Legal concepts
 - Service-level agreement (SLA)
 - Confidentiality
 - o Statement of work
 - Non-disclosure agreement (NDA)
 - o Master service agreement
- Permission to attack

MODULE 2 – EXPLAIN THE IMPORTANCE OF SCOPING AND ORGANIZATIONAL/CUSTOMER REQUIREMENTS.

- Standards and methodologies
 - MITRE ATT&CK
 - Open Web Application Security Project (OWASP)
 - National Institute of Standards and Technology (NIST)
 - o Open-source Security Testing Methodology Manual (OSSTMM)
 - Penetration Testing Execution Standard (PTES)
 - Information Systems Security Assessment Framework (ISSAF)
- Rules of engagement
 - Time of day
 - Types of allowed/disallowed tests
 - o Other restrictions
- Environmental considerations

- o Network
- \circ Application
- o Cloud
- Target list/in-scope assets
 - o Wireless networks
 - Internet Protocol (IP) ranges
 - o Domains
 - Application programming interfaces (APIs)
 - Physical locations
 - Domain name system (DNS)
 - o External vs. internal targets
 - First-party vs. third-party hosted
- Validate scope of engagement
 - Question the client/review contracts
 - o Time management
 - o Strategy
 - o Unknown-environment vs. known-environment testing

MODULE 3 – GIVEN A SCENARIO, DEMONSTRATE AN ETHICAL HACKING MINDSET BY MAINTAINING PROFESSIONALISM AND INTEGRITY.

- Background checks of penetration testing team
- Adhere to specific scope of engagement
- Identify criminal activity
- Immediately report breaches/ criminal activity
- Limit the use of tools to a particular engagement
- Limit invasiveness based on scope
- Maintain confidentiality of data/information
- Risks to the professional
 - Fees/fines
 - Criminal charges

UNIT 2 – INFORMATION GATHERING AND VULNERABILITY SCANNING

MODULE 1 - GIVEN A SCENARIO, PERFORM PASSIVE RECONNAISSANCE.

- DNS lookups
- Identify technical contacts
- Administrator contacts
- Cloud vs. self-hosted
- Social media scraping
 - Key contacts/job responsibilities
 - Job listing/technology stack
- Cryptographic flaws
 - Secure Sockets Layer (SSL) certificates
 - \circ Revocation
- Company reputation/security posture
- Data
- Password dumps
- File metadata
- Strategic search engine analysis/enumeration
 - Website archive/caching
 - Public source-code repositories
- Open-source intelligence (OSINT)
 - o Tools
 - Shodan
 - Recon-ng
 - Sources
 - Common weakness enumeration (CWE)
 - Common vulnerabilities and exposures (CVE)

MODULE 2 - GIVEN A SCENARIO, PERFORM ACTIVE RECONNAISSANCE.

- Enumeration
 - o Hosts
 - o Services
 - o Domains
 - o Users
 - Uniform resource locators (URLs)
- Website reconnaissance

- o Crawling websites
- $\circ \quad \text{Scraping websites} \quad$
- o Manual inspection of web links
 - robots.txt

Packet crafting

• Scapy

Defense detection

- Load balancer detection
- Web application firewall (WAF) detection
- Antivirus
- Firewall

Tokens

- Scoping
- Issuing
- Revocation

Wardriving

Network traffic

- Capture API requests and responses
- Sniffing

Cloud asset discovery

Third-party hosted services

Detection avoidance

MODULE 3 - GIVEN A SCENARIO, ANALYZE THE RESULTS OF A RECONNAISSANCE EXERCISE.

- Fingerprinting
 - Operating systems (OSs)
 - o Networks
 - o Network devices
 - o Software
- Analyze output from:
 - o DNS lookups
 - Crawling websites
 - Network traffic
 - o Address Resolution Protocol (ARP) traffic

- o Nmap scans
- Web logs

MODULE 4 - GIVEN A SCENARIO, PERFORM VULNERABILITY SCANNING.

- Considerations of vulnerability scanning
 - Time to run scans
 - Protocols
 - o Network topology
 - o Bandwidth limitations
 - o Query throttling
 - Fragile systems
 - Non-traditional assets
- Scan identified targets for vulnerabilities
- Set scan settings to avoid detection
- Scanning methods
 - o Stealth scan
 - o Transmission Control Protocol (TCP) connect scan
 - o Credentialed vs. non-credentialed
- Nmap
 - Nmap Scripting Engine (NSE) scripts
 - Common options
 - A
 - sV
 - sT
 - Pn
 - 0
 - sU
 - sS
 - T 1-5
 - script=vuln
 - р

Vulnerability testing tools that facilitate automation

UNIT 3 – ATTACKS AND EXPLOITS

MODULE 1 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM NETWORK ATTACKS.

- Stress testing for availability
- Exploit resources
 - Exploit database (DB)
 - Packet storm
- Attacks
 - ARP poisoning
 - Exploit chaining
 - Password attacks
 - Password spraying
 - Hash cracking
 - Brute force
 - Dictionary
 - On-path (previously known as man-in-the-middle)
 - Kerberoasting
 - DNS cache poisoning
 - Virtual local area network (VLAN) hopping
 - Network access control (NAC) bypass
 - Media access control (MAC) spoofing
 - Link-Local Multicast Name Resolution (LLMNR)/NetBIOS- Name Service (NBT-NS) poisoning
 - New Technology LAN Manager (NTLM) relay attacks

Tools

- Metasploit
- Netcat
- Nmap

MODULE 2 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM WIRELESS ATTACKS.

- Attack methods
 - o Eavesdropping
 - $\circ \quad \text{Data modification} \quad$
 - $\circ \quad \text{Data corruption} \quad$
 - o Relay attacks

- \circ Spoofing
- Deauthentication
- o Jamming
- Capture handshakes
- o On-path
- Attacks
 - \circ Evil twin
 - Captive portal
 - o Bluejacking
 - o Bluesnarfing
 - o Radio-frequency identification (RFID) cloning
 - Bluetooth Low Energy (BLE) attack
 - o Amplification attacks [Near-field communication (NFC)]
 - WiFi protected setup (WPS) PIN attack
- Tools
 - Aircrack-ng suite
 - o Amplified antenna

MODULE 3 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM APPLICATION-BASED ATTACKS.

DAJED ATTACKS.

- OWASP Top 10
- Server-side request forgery
- Business logic flaws
- Injection attacks
 - Structured Query Language (SQL) injection
 - Blind SQL
 - Boolean SQL
 - Stacked queries
 - Command injection
 - Cross-site scripting
 - Persistent
 - Reflected
 - Lightweight Directory Access Protocol (LDAP) injection

Application vulnerabilities

- Race conditions
- Lack of error handling
- Lack of code signing
- Insecure data transmission
- Session attacks
 - Session hijacking
 - Cross-site request forgery (CSRF)
 - Privilege escalation
 - Session replay
 - Session fixation

API attacks

- Restful
- Extensible Markup Language- Remote Procedure Call (XML-RPC)
- Soap

Directory traversal

Tools

- Web proxies
 - OWASP Zed Attack Proxy (ZAP)
 - Burp Suite community edition
- SQLmap
- DirBuster

Resources

• Word lists

MODULE 4 – GIVEN A SCENARIO, RESEARCH ATTACK VECTORS AND PERFORM ATTACKS ON CLOUD TECHNOLOGIES.

- Attacks
 - Credential harvesting
 - Privilege escalation
 - Account takeover
 - Metadata service attack
 - Misconfigured cloud assets
 - Identity and access management (IAM)
 - Federation misconfigurations

- Object storage
- Containerization technologies
- Resource exhaustion
- Cloud malware injection attacks
- Denial-of-service attacks
- Side-channel attacks
- Direct-to-origin attacks

Tools

• Software development kit (SDK)

MODULE 5 – EXPLAIN COMMON ATTACKS AND VULNERABILITIES AGAINST SPECIALIZED SYSTEMS.

- Mobile
 - o Attacks
 - Reverse engineering
 - Sandbox analysis
 - Spamming
 - Vulnerabilities
 - Insecure storage
 - Passcode vulnerabilities
 - Certificate pinning
 - Using known vulnerable components (i) Dependency vulnerabilities (ii) Patching fragmentation
 - Execution of activities using root
 - Over-reach of permissions
 - Biometrics integrations
 - Business logic vulnerabilities
 - Tools
 - Burp Suite
 - Drozer
 - Mobile Security Framework (MobSF)
 - Postman
 - Ettercap
 - Frida

- Objection
- Android SDK tools
- ApkX
- APK Studio

Internet of Things (IoT) devices

- BLE attacks
- Special considerations
 - Fragile environment
 - Availability concerns
 - Data corruption
 - Data exfiltration
- Vulnerabilities
 - Insecure defaults
 - Cleartext communication
 - Hard-coded configurations
 - Outdated firmware/hardware
 - Data leakage
 - Use of insecure or outdated components

Data storage system vulnerabilities

- Misconfigurations—on-premises and cloud-based
 - Default/blank username/password
 - Network exposure
- Lack of user input sanitization
- Underlying software vulnerabilities
- Error messages and debug handling
- Injection vulnerabilities
 - Single quote method

Management interface vulnerabilities

- Intelligent platform management interface (IPMI)
- Vulnerabilities related to supervisory control and data acquisition (SCADA)/ Industrial Internet of Things

(IIoT)/ industrial control system (ICS)

Vulnerabilities related to virtual environments

- Virtual machine (VM) escape
- Hypervisor vulnerabilities

• VM repository vulnerabilities

Vulnerabilities related to containerized workloads

MODULE 6 - GIVEN A SCENARIO, PERFORM A SOCIAL ENGINEERING OR PHYSICAL ATTACK.

- Pretext for an approach
- Social engineering attacks
 - o Email phishing
 - Whaling
 - Spear phishing
 - Vishing
 - Short message service (SMS) phishing
 - Universal Serial Bus (USB) drop key
 - Watering hole attack

Physical attacks

- Tailgating
- Dumpster diving
- Shoulder surfing
- Badge cloning

Impersonation

Tools

- Browser exploitation framework (BeEF)
- Social engineering toolkit
- Call spoofing tools

Methods of influence

- Authority
- Scarcity
- Social proof
- Urgency
- Likeness
- Fear

MODULE 7 – GIVEN A SCENARIO, PERFORM POST-EXPLOITATION TECHNIQUES.

- Post-exploitation tools
 - o Empire

- o Mimikatz
- o BloodHound
- Lateral movement
 - Pass the hash
- Network segmentation testing
- Privilege escalation
 - o Horizontal
 - o Vertical
- Upgrading a restrictive shell
- Creating a foothold/persistence
 - o Trojan
 - o Backdoor
 - Bind shell
 - Reverse shell
 - Daemons
 - Scheduled tasks

Detection avoidance

- Living-off-the-land techniques/fileless malware
 - PsExec
 - Windows Management Instrumentation (WMI)
 - PowerShell (PS) remoting/Windows Remote Management (WinRM)
- Data exfiltration
- Covering your tracks
- Steganography
- Establishing a covert channel

Enumeration

- Users
- Groups
- Forests
- Sensitive data
- Unencrypted files

UNIT 4 – REPORTING AND COMMUNICATION

MODULE 1 – COMPARE AND CONTRAST IMPORTANT COMPONENTS OF WRITTEN REPORTS.

- Report audience
 - \circ C-suite
 - o Third-party stakeholders
 - o Technical staff
 - Developers
- Report contents (** not in a particular order)
 - o Executive summary
 - o Scope details
 - o Methodology
 - Attack narrative
 - Findings
 - Risk rating (reference framework)
 - Risk prioritization
 - Business impact analysis
 - Metrics and measures
 - Remediation
 - Conclusion
 - Appendix
- Storage time for report

Secure distribution

Note taking

- Ongoing documentation during test
- Screenshots

Common themes/root causes

- Vulnerabilities
- Observations
- Lack of best practices

MODULE 2 – GIVEN A SCENARIO, ANALYZE THE FINDINGS AND RECOMMEND THE APPROPRIATE REMEDIATION WITHIN A REPORT.

- Technical controls
 - o System hardening
 - Sanitize user input/parameterize queries

- o Implemented multifactor authentication
- Encrypt passwords
- Process-level remediation
- o Patch management
- $\circ \quad \text{Key rotation} \quad$
- o Certificate management
- o Secrets management solution
- Network segmentation
- Administrative controls
 - Role-based access control
 - o Secure software development life cycle
 - Minimum password requirements
 - Policies and procedures
- Operational controls
 - $\circ \quad \text{Job rotation} \quad$
 - o Time-of-day restrictions
 - Mandatory vacations
 - User training
- Physical controls
 - \circ Access control vestibule
 - o Biometric controls
 - Video surveillance

MODULE 3 – EXPLAIN THE IMPORTANCE OF COMMUNICATION DURING THE PENETRATION

TESTING PROCESS.

- Communication path
 - o Primary contact
 - o Technical contact
 - Emergency contact
- Communication triggers
 - $\circ \quad \mbox{Critical findings}$
 - o Status reports
 - Indicators of prior compromise
- Reasons for communication

- o Situational awareness
- \circ De-escalation
- Deconfliction
- Identifying false positives
- Criminal activity
- Goal reprioritization
- Presentation of findings

MODULE 4 - EXPLAIN POST-REPORT DELIVERY ACTIVITIES.

- Post-engagement cleanup
 - Removing shells
 - o Removing tester-created credentials
 - Removing tools
- Client acceptance
- Lessons learned
- Follow-up actions/retest
- Attestation of findings Data destruction process

UNIT 5 – EXPLAIN USE CASES OF THE FOLLOWING TOOLS DURING THE PHASES OF A

PENETRATION TEST.

- Scanners
 - o Nikto
 - o Open vulnerability assessment scanner (Open VAS)
 - o SQLmap
 - o Nessus
 - Open Security Content Automation Protocol (SCAP)
 - o Wapiti
 - o WPScan
 - o Brakeman
 - o Scout Suite
- Credential testing tools
 - o Hashcat
 - o Medusa
 - o Hydra

- o CeWL
- \circ John the Ripper
- o Cain
- o Mimikatz
- o Patator
- o DirBuster
- Debuggers
 - o OllyDbg
 - o Immunity Debugger
 - GNU Debugger (GDB)
 - WinDbg
 - Interactive Disassembler (IDA)
 - o Covenant
 - SearchSploit
- OSINT
 - o WHOIS
 - o Nslookup
 - Fingerprinting Organization with Collected Archives (FOCA)
 - o theHarvester
 - $\circ \quad \text{Shodan}$
 - o Maltego
 - o Recon-ng
 - o Censys
- Wireless
 - Aircrack-ng suite
 - o Kismet
 - \circ Wifite2
 - o Rogue access point
 - o EAPHammer
 - o mdk4
 - $\circ \quad \text{Spooftooph}$
 - o Reaver
 - Wireless Geographic Logging Engine (WiGLE)
 - o Fern

- Web application tools
 - OWASP ZAP
 - o Burp Suite
 - o Gobuster
 - o w3af
- Social engineering tools
 - Social Engineering Toolkit (SET)
 - o BeEF
- Remote access tools
 - Secure Shell (SSH)
 - o Ncat
 - Netcat
 - ProxyChains
- Networking tools
 - o Wireshark
 - o Hping
- Misc.
 - SearchSploit
 - o Responder
 - o Impacket tools
 - o Empire
 - o Metasploit
 - o mitm6
 - CrackMapExec
 - TruffleHog
 - o Censys
- Steganography tools
 - o Openstego
 - o Steghide
 - o Snow
 - o Coagula
 - o Sonic Visualiser
 - o TinEye
- Cloud tools

- o Scout Suite
- \circ CloudBrute
- o Pacu
- $\circ \quad \text{Cloud Custodian} \\$

LABORATORI PRATICI COMPTIA PENTEST PLUS

- 01: Exploring the Lab Environment
- 02: Exploring the Domain Tools: Nslookup, Dig, and Whois
- 03: Navigating Open-Source Intelligence Tools
- 04: Understanding Social Engineering Toolkit (SET)
- 05: Understanding Spear Phishing and Credentials Attack
- 06: Exploring OpenVAS
- 07: Using Web Scanners
- 08: Understanding Nmap Common Usage
- 09: Scanning a Vulnerable System
- 10: Understanding Scan Output
- 11: Navigating Steganography Tools
- 12: Demonstrating Enumeration Techniques
- 13: Exploring the Basics of Metasploit
- 14: Using VSFTP Manual and Metasploit
- 15: Monitoring with Aircrack-ng
- 16: Discovering IoT devices with Shodan
- 17: Using SQL Injection
- 18: Using Reverse and Bind Shells
- 19: Analyzing Exploit Code
- 20: Exploring Programming Shells
- 21: Applying PenTest Automation

22: Exploring Password Attacks with John the Ripper and Hydra

- 12 ore 30 minuti di laboratori
- Per ogni laboratorio è fornito un tutorial scritto e illustrato su come svolgere il laboratorio passo dopo passo
- La piattaforma dei laboratori è in CLOUD
- La durata di ogni singolo laboratorio varia tra i 30 ed i 60 minuti

